

UDP Dvr API 5 SDK

Developer’s Guide

For Win32 Platform

API Version 5.0

Version 5API SDK Manual

H UDP Technology Ltd. 2

Contents

0. Overview ... 4

1. About UDA5 SDK ... 5

1.1. Package detail ... 5

1.2. Runtime and compile environment ... 5

1.2.1. Runtime Environment .. 5

1.2.2. Build Environment ... 6

2. About Version 5 API ... 7

2.1. Software System Architecture .. 7

2.2. API Set Outline .. 8

2.2.1. Video API Set .. 10

2.2.2. Codec API Set ... 11

2.2.3. Audio API Set ... 11

2.2.4. RealTime API Set .. 11

2.2.5. Network API Set .. 11

2.2.6. Other characteristics of the API 5 .. 12

2.3. API Set Features ... 14

2.3.1. Common Functions .. 14

Process Control Functions... 14

Information Functions .. 16

Property Functions ... 17

Adjust Functions .. 17

2.3.2. Data Functions .. 18

Event Data Retrieve Functions .. 18

Data Function’s characteristic ... 19

Callback methods .. 21

2.3.3. Video Functions ... 22

Video Format Functions... 22

Image Size Functions .. 23

External Video Out Function .. 23

Video Status Function .. 23

2.3.4. Raw Video Functions ... 23

Color Format Functions ... 23

Frame Rate Function ... 24

2.3.5. DIO/WD Functions .. 25

Version 5API SDK Manual

H UDP Technology Ltd. 3

DIO... 25

WatchDOG .. 25

I2C ... 26

2.3.6. Codec Functions .. 26

Codec Property .. 27

Codec Adjust ... 27

2.3.7. Audio ... 28

2.3.8. Realtime ... 28

2.3.9. Network .. 28

3. Using Version 5 API ... 30

3.1. Preparing functions calls .. 30

Using Exported Function(Dynamic link) .. 30

Using Com interface methods. .. 30

3.1.1. In C++ .. 31

Files for C++ .. 31

Using Exported Function in C++ .. 31

Using COM interface methods in C++ ... 32

3.2. Using Driver’s API ... 34

3.2.1. Program Configuration Scenario ... 34

Program Implementation by Callback Method... 34

Program Implementation by Event Method 1 .. 34

Program Implementation by Event Method 2 .. 35

3.2.2. Getting Started... 35

3.2.3. Driver Information ... 36

3.2.4. Driver Initialization .. 37

3.2.5. Start Driver ... 38

3.2.6. Data Loop ... 40

3.2.7. Data Process 1– Media Data ... 43

3.2.8. Data Process 2- Status .. 43

3.2.9. Stop Driver.. 44

3.2.10. Driver Uninitialization ... 45

Version 5API SDK Manual

H UDP Technology Ltd. 4

0. Overview

UDA5 (UDP Dvr Api ver 5) refers to interface method between UDP products operated on the PC and

the application.

UDA5 SDK (Software Development Kit) refers to the environment that allows the development of

software using UDA5.

Each chapter of this manual consists of the following.

In the chapter 1, SDK package and environment are explained.

In the chapter 2, UDA 5 API and software/driver structure are explained.

In the chapter 3, actual usages of the API with example source codes are demonstrated.

Please consult following manuals for further reference.

Manual Name Description

HW Manual HW Installation and Specification

UDA5 Reference Guide. API reference.

SW Manual Product specific API variation.

SampleApp User Guide Using Sample Applications

Version 5API SDK Manual

H UDP Technology Ltd. 5

1. About UDA5 SDK

1.1. Package detail

The SDK is distributed in a package that contains following file types.

Package Files Description

Driver *.sys Binary files for the device driver.

*.inf Information files for the device driver.

DLL *.dll Dynamic link library files

*.lib Library files to be linked during program compilations.

*.h Header files to be included in program source

Sample

Program

*.exe Executable files

*.xml Initialization files containing DLL / ModelID / Activation

Code information.

Various Configuration data.

Sample

Source

.cpp;.h;

.dsp;.rc…

Source files for example programs.

Manual *.pdf Document Files.

1.2. Runtime and compile environment

1.2.1. Runtime Environment

Hardware Requirements

Software Requirements

Main Board Intel BX or later chipset

CPU Celeron/Pentium III, IV or higher CPU

Memory 256MB or more – More memory may be required due to

hardware configuration

VGA AGP or PCI-E VGA supporting Overlay function

OS Microsoft Windows 2000, Microsoft Windows XP, Microsoft Windows Vista

Other DirectX 7.0 or higher

Version 5API SDK Manual

H UDP Technology Ltd. 6

Even though the UDP product is actually operated in a different environment, since it is not tested

sufficiently, normal operation cannot be guaranteed.

1.2.2. Build Environment

Following additional conditions are required in addition to the runtime environment

Microsoft Visual C/C++ 6.0

Service Pack 5 for Microsoft Visual C/C++ 6.0

Microsoft Platform SDK

Microsoft Direct X SDK 7.0 or higher

Processor Pack for Service Pack 5 (Optional)

- Or -

Microsoft Visual Studio.NET

Version 5API SDK Manual

H UDP Technology Ltd. 7

2. About Version 5 API

2.1. Software System Architecture

Diagrams for the software system structure for local devices

Diagram for Network device.

Application Program

Dynamic Link Library (DLL)

API 5

Network Device

Network Connection

Application Program

Dynamic Link Library (DLL)

Kernel Device Driver (SYS)

Physical Hardware

A
P

P

D
riv

er L
a
y
e
r

K
ern

el L
ev

el

H
W

S

W

U
ser L

ev
el

API 5

Version 5API SDK Manual

H UDP Technology Ltd. 8

As shown above, the application recognizes only the Driver Layer through API 5 interface. Levels on

the figure can be grouped as User / Kernel Level or SW / HW depends on a point of view. For the

network device, the application program is interfaced with the device in the form of API5 in the same

manner.

As long as the API version 5 is supported, internal changes in HW and SYS/DLL, and even the network

device or local device do not have any effect on the usability of the application. This is the main reason

for defining the API.

2.2. API Set Outline

The API 5 is divided into five API sets as Audio, Video, Codec, Real-time and Network. The sets are

grouped by types and functions of data supported by the HW board. Descriptions and characteristics are

shown below.

Each HW (Board) supports one or more of API Sets. HW supporting multiple API sets utilizes one or

more of DLL/SYS pairs. Actual example figure is shown below.

API Set Function Name

Type/Example

Related HW

Audio Aud5xxx/ Aud5Setup Generates raw audio data.

Video Cap5xxx/

Cap5SetVideoFormat

Generates raw video data.

Codec Cod5xxx/

Cod5ReleaseData

Generates compressed audio/video data.

RealTime Ovr5xxx/

Ovr5Split

Transmits real-time video data to the graphic card

Network Net5xxx/ Net5Connect Generates various data over networks.

Version 5API SDK Manual

H UDP Technology Ltd. 9

These API sets share a very similar function set(except network devices). If observed in function level,

the similarity is apparent. The next chart shows relationship between the API sets and their functions.

Exclusive Function Sets for each API set are marked as Gray color.

Following is set diagram for the function sets. The Common Function Set is included in every API set.

 Common Data DIO/

WD

Video Audio Codec Raw

Video

Raw

Audio

Ovr Net

work

Cod5

Cap5

Aud5

Ovr5

Net5

NCP series ECPR series MP series

ECPSV (ECPSVU)

ECPSV, MPJVS

CapSV CapAM

ECPSV ECPSV, MPJVS CapAM CapSeries

Cap5

API

Aud5

API

Cap5

API

Cod5

API
Ovr5

API

DLL

SYS

HW

Aud5

API

Ovr5

API

Cap5

API

Aud5

API

Version 5API SDK Manual

H UDP Technology Ltd. 10

Only the network device is involved in the network connection, etc., and it has characteristics other than

the remaining 4 types of APIs.

All the APIs shown above are provided in the form of COM (Component Object Model) Interface. Only

the local device is composed of double structures that support the exported function additionally.

Name and ID of Interface for Each API

API Interface Name Interface ID

Cap5 ICap5 IID_ICap5

Cod5 ICod5 IID_ICod5

Aud5 IAud5 IID_IAud5

Ovr5 IOvr5 IID_Ovr5

Net5 INet5 IID_Net5

All interfaces support IUnknown. The pointer for other interfaces that are supported by the

corresponding device through QueryInterface can be obtained.

2.2.1. Video API Set

Functions in the set have Cap5xxx style function names.

The API set includes functions to import Raw Video type data and DIO/Watchdog function. While the

API supports similar function set to Cap3 API of Suez Video, note that there are changes made.

Ovr

Raw
Video

Video

Audio

Data

Raw
Audio

DIO/WD

Codec

API’s function features

Cap5 Cod5 Aud5 Ovr5

Version 5API SDK Manual

H UDP Technology Ltd. 11

The API set is mostly used to compress and store the Raw Data, or process and display images on the

screen. However, with the CODEC / Real-time API, the Video API may substitute data compression and

screen display.

The Video API set generates very large data, compared to other API sets. If used in the multi-card

environment, the set generates larger data than PCI range of 133MB/s (32bit/33MHz) or PCI-

E(266MB/s). To handle the large data, the APP must be carefully designed to support it.

The set supports Video Signal Format / image size (resolution) as basic video characteristics and frame

rate / color format as raw video characteristics.

2.2.2. Codec API Set

The CODEC API set uses Cod5xxx format function names.

The set includes functions to load compressed Audio / Video data and DIO / Watchdog functions. The

set is similar to the CAPM4 API.

Depends on the system board, the Cod5 API can generate motion data and other a variety of data format

in addition to the basic compressed Audio / Video data. Also, depends on the HW board and driver,

specific format of the Audio / Video stream varies.

Since the CODEC data is stream type data, a block of data such as GOP(Group of Pictures) becomes

invalid when buffer overflow or data corruption occurs. When this happens, the driver must notify it to

the APP and stop generating data. This step is necessary because the data might be meaningless and

receiving data is not even available if there is an error in the APP itself. After the correction is made, call

the ChannelEnable function from APP to restart the channel.

2.2.3. Audio API Set

The Audio API set uses SAud5xxx format function names.

The set includes functions to load Raw Audio type data. Unlike the Cod5 and Cap5 API sets, the Audio

API set does not support DIO /Watchdog functions. While the API supports a similar function set to

Cap3 API of Suez Video, note that there are changes made, such as removal of frame rate related

functions.

2.2.4. RealTime API Set

The API set uses Ovr5xxx format function names. Unlike other API sets, the set only includes simple

control functions without supporting any data. While real-time image data does not pass the CPU, it

does not support data function group.

2.2.5. Network API Set

The API set uses Net5xxx format function names. Unlike other API sets, the set only includes network

control functions without supporting any common features. When using the network device, only after

Version 5API SDK Manual

H UDP Technology Ltd. 12

the connection is completed successfully using the Net5 API can the remaining API sets be used.

2.2.6. Other characteristics of the API 5

 Type API 5 supports multi-board operation. Each API function has uBDID to support the

multi-board operation. Use similar or different boards to make a variety of configurations.

 All API sets include process state control functions and have own process state. Even if a

board supports more than one AIP sets (MP204: Supports Cap5 and Cod5), the process control

function of one API does not affect to process state of other API sets.

 In the network device, any API can be used that is supported by each of the remaining devices

after Net5 has been used to get it in connection state. All connection/process control states are

irrelevant to each interface.

 All API functions return a Boolean value to indicate success or failure of the function...

 List of commonly used parameters.

 Each DLL supports one or more API Sets..

 The API supports parameter type functions. Depends on parameter values, one function can

have multiple abilities. Suitable for additional expansion.

Parameter Description

uBdID Index number to the board. The nearest slot to CPU is index 0. The next is index 1, and

so forth. Even if a slot is skipped, index numbering is not affected and only the order of

slots is affected.

uChID Index number to the channel. Each board in the system has index number to channel.

Because actual channel index among boards might be related together, interface for all

channels are not provided.

uVPID Index number to the video processor. Each board has own index number. Used in I2C,

Video FrameRate (UserSequenceList) only.

uCmd Parameter for Property/Adjust functions. Additional parameters are used for each

function.

bwData Bitwise type data. Sensor/VideoStatus

Version 5API SDK Manual

H UDP Technology Ltd. 13

 API Set and Physical Device – If a function named SetBrightness is called from physically

different devices, each call will be applied to it’s own API set. However, when there are two

API sets sharing same function name in one device, each call will affect to both API sets since

they share same physical video processor. (ex: both Cap5 and Cod5 has SetAdjust –

ADJ_BRIGHNESS,…) Please keep this in mind while designing APP..

Version 5API SDK Manual

H UDP Technology Ltd. 14

2.3. API Set Features

2.3.1. Common Functions

Basic function groups such as Cod5, Cap5, Aud5, and Ovr5. These groups include basic control and

reporting functions.

Process Control Functions

A driver is a state machine with a static internal value. Depends on the state, available API functions are

limited. A driver has one of following three states at any given time.

The process control functions (Setup/Run/Stop/Endup) can change the status value. See the next figure

and chart for relationship between these functions.

Before the setup, each board needs activation to run the driver. Use Activate function of each API set to

issue a Activate code. Each board model has own activation code and is distinguished by ModelID. Use

BoardInfo to get the ModelID. Required Activation code fore each ID is provided separately through

Status Description

INIT The driver has not been loaded

SETUP The driver has initialized. The APP can set properties.

RUN Internal routine of the driver is running. APP can run most of the API functions. The APP is

processing major work.

Function Pre-Condition Post-Condition(Succeeded)

Setup Init Setup

Run Setup Run

Stop Run Setup

Endup Setup/Run Init

Stop

Endup

Run

Setup

INIT SETUP

RUN

Version 5API SDK Manual

H UDP Technology Ltd. 15

Sample Code/Registry File/Ini File/Document. Every board supported by an API set need to be activated

before using the API.

Below is a diagram for the relationship between ProcessControl function and other functions and the

driver status.

 ChannelEnable

The ChannelEnable function is used to enable/disable each channel instead of the whole API. Although

the ChannelEnable function is not expressly included in the ProcessControl, it is a type of the

GetSystemInfo

Activate

Init

State

Setup()

Set Properties

SetVideoFormat

SetImageSize

SetColorFormat

SetProperty

ChannelEnable

Setup

State

Run()

WatchDog(Enable)

Run

State

Data Invoke Loop

WaitEvent

GetData

ProcessData

ReleaseImage

 Other Processing

Watchdog(Trigger)

SetDo

SetAdjust

Other APIs

WathchDog(Disable)

Stop()

Setup

State

Endup()

Init

State

Version 5API SDK Manual

H UDP Technology Ltd. 16

ProcessControl function. This function can enable or disable basic function of each channel in the board.

In the Cap5, assign whether or not capture video from the channel. In the CODEC, assign whether or not

make compression stream. In the Ovr, decide whether or not display the channel in the screen. Enabling

this in the Setup state will affect in the next Run state. Enabling this in the Run state will affect

immediately. This function is available in both the Setup and Run states.

The Process Control also decides order to use the driver API. For example, the Setup must be done

before the Run. However, some API has predefined sequence of functions regardless of the Process

Control. For example, some Setup state functions such as SetVideoFormat/SetImageSize/SetFrameRate

have no sequence by the Process Control but have own sequence by relationship to each other.

Information Functions

All API sets in the API5 provide functions for API status and information. These functions are described

below. Before the activation, use this function to decide what to activate.

 QueryInfo

Get the current system status. Mainly get the Process Control state. Check the Process Control section

for the detail

 GetSystemInfo

Get number of boards and version information of the system. Receive the information in the

CMN5_SYSTEM_INFO structure regardless of the API set. Usually called in the beginning of the APP

 GetBoardInfo

Get the board information. Each API has own information structure. Check CAP5_BOARD_INFO,

COD5_BOARD_INFO, AUD5_BOARD_INFO, and AUD5_BOARD_INFO for each API set.

Following is available information by the function.

Common values

 GetLastError

Structure of the API only allow returning success or failure information of the operation. Use the

Variable Description

uModelID Base value to get the Activate code for the activation. More information is available in

the Process Control.

uSlotNumbe Physical PCI slot number.

uMaxVP Number of VP. Related to functions using the uVPID parameter.

uMaxChannel Number of Channels. Related to functions using the uChID parameter.

Version 5API SDK Manual

H UDP Technology Ltd. 17

GetLastError function to get detailed error information when the API has failed.

Unlike the Win32 GetLastError storing only the last error per each thread and returns only the error code,

the API5 GetLastError stores error information in the internal queue and provides detailed error

information and internal ErrorCode for the last and previous errors.

Property Functions

Set or get Setup state controllable values per each channel. (SetProperty, GetProperty) The Get Property

is available in both the Setup and Run states but the SetProperty is available only in the Setup state. The

functions use additional parameters to run the command. The Set function has four ULONG parameters

and the Get function has four ULONG* parameters. Actual type and meaning of the parameters are

decided by the command. Not all parameters need to be used.

Usable commands can be categorized by each function set. For example, in the Cod5SetProperty,

property command of Video/Audio/CODEC functions are available. Check Audio/CODEC/Video

functions and reference paragraph for the detail.

Following is example of commands supported by each function. More commands may be added in the

next SDK versions.

Adjust Functions

Set or get parameters for each channel, which are available in the Run state. Both SetAdjust, and

GetAdjust are available in both the Setup and Run states.

The functions use additional parameters to run the command. The Set function has four ULONG

parameters and the Get function has four ULONG* parameters. Actual type and meaning of the

parameters are decided by the command. Not all parameters need to be used.

Usable commands can be categorized by each function set. For example, in the Cod5SetProperty,

property command of Video/Audio/CODEC functions are available. Check Audio/CODEC/Video

Function Property Commands

Audio Sampling Frequency

Codec Stream Type(AudVideo, Audio Only, Video Only),GOP Size

Video Configurable items with property are already supported by functions. Therefore the Video

property is not currently supported. It is still possible to add it.

Version 5API SDK Manual

H UDP Technology Ltd. 18

functions and reference paragraph for the detail.

Following is example of commands supported by each function. More commands may be added in the

next SDK versions.

2.3.2. Data Functions

The Data function group provides methods to collect the board generated data. Cod5, Cap5, and Aud5

API sets support the Data function set. In the API Version 5, only Callback/Event methods are supported.

Note that Query method is not supported.

Event Data Retrieve Functions

In the Event method, the GetEventHandle function is used to get event of each data type, wait for event

signal, and get the type of data with the GetEventData function. Suitable if one APP supports multiple

API sets simultaneously and uses only one data thread.

The next figure describes general Event method.

Function Adjust Commands

Video Brightness, Contrast, SaturationU, SaturationV, Hue

Audio Gain

Codec Skip Frame, Bit-rate

WaitForMultipleObjects(event)

Switch(Type)

GetEventData

ProcessData

ReleaseData

Loop Until HasNextData

…(other data)

Loop Until Stop

GetEventHandles(event)

Data Loop
Setup

Run

State

Run

State

Version 5API SDK Manual

H UDP Technology Ltd. 19

Each API set provides notification event of data and status through the GetEventHandle function. The

type provided matches with DataType supported by each API set. Please check <Chart1-1>. After

retrieving event matching each DataType, use Win32 wait function to wait for the event to check data

generation of status change. If the specific data generation is sensed, call appropriate API GetEventData

function to get the actual data. Use the data appropriately according to the APP (Previously done with

the Callback function) and call the Release function. Check the HasNextData field to process any

remaining same type of data before calling the wait function again.

Caution!

You may be confused if the released data can be used again after calling Release function. Below

description might be useful for this.

1
st
 rule : Always call ReleaseData.

ReleaseData should be called in any circumstances.

2
nd

 rule : Data validity is “unknown” just after the data has been released.

You might have an access to the data even after you already released it. But this is beyond the UDP’s

principle, so it will be changed without any prior notice. Therefore, the fact that now you can access to

the data even after releasing it does not guarantee that you will be able to do the same in the future. You

might get a broken or null data with our future dll.

3
rd

 rule : Both data header and its actual data should be copied

If you would like to have an access to the data after releasing it without any preconditions, you should

copy the header information and the actual data as well (such as raw video image and compressed data).

Copied data is no longer the data managed by the driver, so your APP can handle the data without any

restrictions.

* Since the media data (Not status data) pointer guarantee 16byte align, use the SIMD commands in

performance critical routine.

In the physically same device (For example, DI and DO in MP204 are physically same), get handle from

only one API for one DataType (For example, sensor/Vstatus in Cod5 only)

Data Function’s characteristic

While the callback method uses passive structure with driver control, in the Event method, the APP has

control to get the data and uses own loop to repeatedly get the data. This is the Data Invoke Loop part of

Version 5API SDK Manual

H UDP Technology Ltd. 20

the program sequence diagram.

The Event method had separate functions for data notification and data collection. Therefore, more

detailed control is possible with the Event method. Regardless of the method, collected data must be

released with the ReleaseData function to free up buffers for the next data.

Each API set generates the data support following data/state types. The Invoke is only available in the

supported type.

Media data such as DT_VIDEO, DT_AUDIO, and DT_COD requires corresponding ReleaseData

functions. Status data such as DT_SENSOR and DT_VSTATUS do not require the ReleaseData

functions. Each type has corresponding structure type as shown below

 DT_VIDEO DT_AUDIO DT_COD DT_SENSOR DT_VSTATUS

Cap5

Aud5

Cod5

Version 5API SDK Manual

H UDP Technology Ltd. 21

In the DT_COD type, details vary depends on characteristics of each CODEC board. Check additional

manuals for the detail.

Callback methods

Can be used more easily than the event method. The callback is retrieving data through the driver’s

internal thread and then calling a function using the data as parameter. Since the callback function runs

in ThreadContext of the APP instead of MainThread of the APP, careful synchronization for global

objects are required.

StartCallback and EndCallback functions are exist to allow resource allocation and deallocation per

thread. For example, the most representative function is CoInitialize()/CoUninitialize(). The data

callback is called when the data is created. The App should register NULL function for the unused

callback.

Type of Supporting Callback for Each API Set

API Callback types

Cap5 Video Data, Video Status, DI Status

Cod5 Coded Data, Video Status, DI Status

Aud5 Audio Data

Ovr5 N/A

Net5 N/A

When registering the callback function, the lpcontext can be used as ID or class pointer, etc. when the

callback is called.

The callback method has an advantage that it is simple but has the following restraints.

Type Data/Status Structure

DT_VIDEO data CAP5_DATA_INFO

DT_AUDIO data AUD5_DATA_INFO

DT_COD data COD5_DATA_INFO

DT_SENSOR status CMN5_SENSOR_STATUS_INFO

DT_VSTATUS status CMN5_VIDEO_STATUS_INFO

Version 5API SDK Manual

H UDP Technology Ltd. 22

Restraints on the Callback Method

 Resolving Deadlock processing is needed.

 Adjustment of the priority of the thread is not desirous.

 Since the thread configuration cannot be expected, various safety devices are needed for the

callback routine.

 Various thread configurations are impossible and it is fixed by the driver.

 Not supported in the network device.

About the occurrence of deadlock

When developed with the callback method, in some cases the stop function does not return. This

phenomenon is called deadlock. Since the callback routine waits for the result from the thread that stops

the function and the stop routine waits for the end of callback internally, both the threads are put into the

endless waiting state.

The general solution for the elimination of the deadlock is to create the thread (StopThread) that calls the

stop function separately and process the message in the main thread while waiting until the StopThread

is ended using the message loop composed of MsgWaitForMultipleObjects().

2.3.3. Video Functions

Common in both Cap5 and Cod5 API sets. General setup function related to Video. The BOARD_INFO

structure used by the function group supports following member variables.

Video Format Functions

Uses enum VideoFormatValues. Currently only NTSC_M and PAL_B are supported. Configured in

board level only. Configuration in channel level is not supported. Must be set before setting image size.

Supports both Get/Set functions.

Variable Description

pResInfo Supported resolutions by the board. Pointer to the RESOLUTION_INFO structure.

Version 5API SDK Manual

H UDP Technology Ltd. 23

Image Size Functions

Setup image resolutions in both Raw Video and Compressed Video. In most cases, uses any resolution

provided by channels. However, some special boards have limitation in the resolution, and support only

a set of resolution. All channels in the same board must use resolutions from same resolution group.

Detailed information about this limitation is available by pResInfo member variable of the

RESOLUTION_INFO structure in any of CAP5_BOARD_INFO or COD5_BOARD_INFO structure.

The BOARD_INFO can be retrieved by GetBoardInfo function of each API. Since the ImageSize

depends on video format setting, must set the VideoFormat first. Both Get/Set functions are supported.

External Video Out Function

Select a channel to output through external video output port. Select desired channel per each board.

Video Status Function

Get video input status information of all channels in a board. While it is possible to passively get change

information using the Event method, direct reading is also supported. Get the values in bitwise format. If

the board supports, maximum 8 ULONG variables are supported (32 * 8 = 256 bits – channels).

2.3.4. Raw Video Functions

Only for the Cap5. No additional item in the BOARD_INFO structure.

Color Format Functions

The color format is detailed format of color data in the raw video. The color format need to be set in the

Setup state of the driver. The driver support enum ColorFormatValues for the purpose. However, not all

formats are supported by all drivers. Since each driver has limited capability of supporting color formats,

please consult the specification before writing the APP. Supports both Get/Set functions

Description to major ColorFormat values

 YU12 is the easiest type in CODEC. Overlay support is reasonably suitable as well. Two

pixels (vertical and horizontal) share one color information. Planar method. Uses 1.5byte per

pixel. Both vertical and horizontal must use two pixel units together. Brightness and color

information is separated..

 RGB method is the best method for GDI display output. RGB 24 uses 3 bytes per pixel.

RGB555 (RGB15) and RGB565 (RGB16) use 2 bytes per pixel. The RGB24 has too big data

compare to other formats while the RGB555 and RGB565 has two small bits which might

cause gradation effect

 YUY2 is the best method for the Overlay type display and reasonably suitable for the CODEC

Version 5API SDK Manual

H UDP Technology Ltd. 24

as well. Packeted method. Uses 1.5byte per pixel. Both vertical and horizontal must use two

pixel units together. Brightness and color information is separated. The most common method.

 Y stores only black and white information. For special purpose of image processing, data size

can be reduced to half of the YUY2 method by removing color information. Uses 1 byte per

pixel.

Frame Rate Function

The FrameRate function has two modes. The first is letting the driver to automatically allocate

maximum frame rates among channels (AutoEven). The Second is manually setting frame rate per each

channel (UserFixed). The frame rate can be set per each channel.

AutoEven Mode: Equally distribute the maximum frame rate by the driver to all channels. For example,

in the 16 channels 120fps model, share 7.5 fps per each channel. In this model, The AutoEven mode

tries to maintain total 120fps. For example, if 8 of the 16 channels are unavailable due to no video signal

or ChannelEnable(FALSE), the system shares the 120fps among the rest 8 channels to make each

channel runs in 15 fps.

In the 16 channel 240fps model, if only 12 channels are captures, it is not possible for a channel to be

captured by multiple VP. Therefore some channels run in 15fps while the others run in 30fps. This can

be changed by change in number of captured channels. These are not requirements by normal DVR

applications. It is best to manually assign the frame rate by the APP. The default mode is the AutoEven

mode.

UserFixed Mode: Manually assign frame rate per each channel from the APP. Since the available frame

rate is limited by the VideoFormat, ImageSize and hardware spec, only use the allowed frame rate in the

APP. Even in the UserFixed mode, the assigned frame rate might not be available due to external signal,

synchronization status, PCI range, delay in APP, PC speed, Mainboard chipset, and other external causes.

Channels with 0 frame rate setting do not generate data. There fore, to actually generate data, all of

following conditions must met.

 The driver is in the Run state (Limited only in the NCP series board)

 The channel is enabled

 Valid video signal

 The FrameRate is 1 or greater

 Free buffer

If any of the above conditions does not meet, actual capture does not occur.

Version 5API SDK Manual

H UDP Technology Ltd. 25

2.3.5. DIO/WD Functions

Common for both Cap5 and Cod5 API sets. Other IO and control related functions. The BOARD_INFO

structure related to the function group provides following member variables.

DIO

DIO is short of Digital In & Out. DI is short of Digital In. DO is short of Digital Out. Use DI to check

on/off status of external devices (usually sensors). Use DO to turn on or off external devices (usually

LED and etc.) To check number of installed DIO in the board, check MaxDI and MaxDO variables from

the BOARD_INFO structure. Checking or setting the values for the DIO is done at board wide level in

bitwise format. The DIO runs in either relay mode or powered mode depends on the board. For the

accurate operation, change the mode to match the external device. Check the hardware manual for the

detail

The DI can only get the status, while the DO can both set the status and get the recently set status. To

turn on the external output (Relay), use the bit 0. DI has matching bit as 0 if the external device is turned

on.

Turn on the relay: 0

Turn off the relay: 1

The sensor is turned on: 0

The sensor is turned off: 1

Checking status with the DI is available both in the Setup and Run states. Status change notification for

the DI is only available in the Run state.

Both of Set/Get functions of the DO is available in both the Setup and Run status. To change status of a

specific DO, use GetDO function or recently recorded DO value in the APP to get the current status.

Then use bitwise operation to set the new value.

WatchDOG

Watchdog forces the system to hardware reset if the system malfunctions (The system does not reply for

a given period of time). Some models have buzzer to notify user with beeps before the reset. Check the

Variable Description

uMaxDO Maximum number of DO (Digital Out)

uMaxDI Maximum number of DI (Digital In)

Version 5API SDK Manual

H UDP Technology Ltd. 26

hardware manual for whether or not supporting the buzzer.

When checking the reply, instead of making the driver check the system reply, make the APP to notify

availability to the driver. If the driver does not receive the APP notification for a given time, the driver

reset the system. The APP notification is called Triggering and the given period time is called Timeout.

The WatchDog operates only if enabled. The default timeout is 20 minutes. Setting the timeout value in

disabled status does not cause the triggering. However, the watchdog is triggered when the system is

turned enable. Setting new timeout value also stops triggering. The WatchDog functions are only

available in the Run state. Several methods can be used for triggering in the APP. The most common

method is using Window Timer while it is possible to make a separate thread to update the trigger.

I2C

These functions are used to manually control devices connected to I2C(IIC:Inter-IC) connected to the

board. Not used in normal APP.

Following commands are supported.

 CMN5_I2C_CMD_READ

 CMN5_I2C_CMD_WRITE

 CMN5_I2C_CMD_RANDOM_READ

 CMN5_I2C_CMD_RANDOM_WRITE

 CMN5_I2C_CMD_RANDOM_WRITE_WAIT

The CMN5_I2C_CMD_WRITE is a command that does not designate the address but writes only the

data. Each board is supported differently. Therefore, it is recommended to use

CMN5_I2C_CMD_RANDOM_WRITE.

2.3.6. Codec Functions

Only for the Cod5 API Set. Compression related functions. The BOARD_INFO structure related to the

function group provides following member variables.

The information transmitted to the COD5_BOARD_INFO is the default codec information. The codec

that can be supported generally varies according to the board and more than two codecs can be

supported. In case more than two codecs are supported, they can be set up using

COD5_CPC_CODEC_TYPE of Cod5SetCodecProperty.

Variable Descriptions

uCodecType Type of generated stream

uVideoCodecType Type of the Video CODEC

uAudioCodecType Type of the Audio CODEC

Version 5API SDK Manual

H UDP Technology Ltd. 27

Codec Property

Provides Property Command to set the compression method when compressing video or video stream

using codec. The Property Command can be set up only before initializing compression (setup-level),

and it cannot be changed during compression. When changing it, stop the operation, then perform setup

and start once again. The following table indicates how each command is used.

Property Command Descriptions

COD5_CPC_STREAM_TYPE The type of stream varies according to model and several streams

can be created simultaneously. At least more than one value shall be

selected to create a stream.

For example, if the COD5_CST_VIDEO | COD5_CST_AUDIO is

used, the Audio/Video stream is created. Different forms of codec

are created according to the board and selected codec type. That is,

although the video stream is created using the COD5_CST_VIDEO,

if the selected codec is COD5_VCT_MP2, the MPEG2 video

stream is created and if it is COD5_VCT_MP4, the MPEG video

stream is created.

COD5_CPC_SKIP_FRAME Designates the skip frame of the Compressed Video Stream. The

actual frame rate becomes the total frames//(skipframe+1). If the

frame rate is reduced, the actual bit-rate is reduced in proportion to

the set bit-rate.

COD5_CPC_BITRATE Sets up the bit-rate of the Mpeg Video Stream. Its unit becomes bps.

The type of bit-rate setup includes constant bit-rate and variable bit-

rate. The variable bit-rate is set up by designating average and

maximum values, minimum and maximum values, and quantization

value. Since each driver has a limited way of supporting, their

contents must be checked first.

COD5_CPC_GOP_SIZE Sets the GOP (Group of Pictures) size of the Mpeg video.

Designates the size of all GOP and the number of B pictures.

COD5_CPC_AUDIO_ATTR Sets the value for audio compression. It sets the sampling rate and

the bit-rate.

COD5_CPC_CODEC_TYPE Sets the codec to be used for compression.

Codec Adjust

Provides audio and video setup parameters that can be changed during compression. It provides a

Version 5API SDK Manual

H UDP Technology Ltd. 28

command identical to the raw video and audio adjust command. However, the setup may be impossible

according to the board characteristics due to HW-dependency.

2.3.7. Audio

The BOARD_INFO structure related to the function group provides folowing member variable.

According to gain group type, the range of gain and default gain may be changed. The following table

shows the gain range and default value as gain group type.

2.3.8. Realtime

Only for the Ovr5 API set.

While most of the Ovr5 API functions are similar to the Video functions, slight difference due to

characteristics of the Ovr separated this API set from the rest. Note that there are some differences

regardless of similarity to the Video API.

2.3.9. Network

Only for the Net5 API set

The network device can also use API including Cod5 and Cap5. However, they can be used after

connection is made using the Net5 API.

The following figure presents the diagram for the correlation between the Connection State/Process

Control State and each connection. As can be seen from the figure, the connection state affects the

process control state of the remaining API.

Variable Descriptions

uFrequencyType Type of the Frequency group

uGainType Type of the gain group

Gain Group Gain Ranage

AUD5_AGT_GAIN_TYPE1 1-15, default 3

AUD5_AGT_GAIN_TYPE2 0-255 , default 128

AUD5_AGT_GAIN_TYPE3 1-4 range

Version 5API SDK Manual

H UDP Technology Ltd. 29

Disconnected state

Init

Setup

Run

Cap5

Connected state

Net5Connect

Net5Disconnect

Or Disconnection

Init

Setup

Run

Cod5

Init

Setup

Run

Aud5

Version 5API SDK Manual

H UDP Technology Ltd. 30

3. Using Version 5 API

Chapter 3 describes the actual API usage.

3.1. Preparing functions calls

Several preparation procedures are needed to call the actual API function. They are divided into two

methods according to how the API is called. The first method is to call the exported function of dll and

the other one is to call the method by creating the instance of the COM Interface. Since the concrete

method for the above differs according to the language, each method is considered for each language.

However, the method to use the export function cannot be used for the network device due to the API

structure.

Both the above two methods also require a process to obtain an appropriate dll name according to the set

device.

Using Exported Function(Dynamic link)

In order to use the function exported to DLL, the pointer of each function exported to the corresponding

dll can be imported using the LoadLibrary()/GetProcAddress()/FreeLibrary() functions of Win32.

To use the dynamic link, retrieve each API function as a function pointer. Three steps are required to do

this in the source code: defining function pointer variable, declaring function pointer variable, and

invoking function pointer address. Following are steps required to use the function pointer.

 Get required DLL filename and path

 Use LoadLibrary() to load the DLL and get the handle

 Get address of each function.

 Use the function pointer to use the function

 Unload the DLL

Using Com interface methods.

Although it supports the com interface, it cannot be created using standard com library such as

cocreateinstance due to the intricacy of the dll configuration. The Cmn5createinstance function should be

used. The method to use the Cmn5createinstance is identical to the method to use the export function

mentioned above.

Local Device and Net Devices

Although the local device performs createinstance several times, it will return the same interface pointer,

Version 5API SDK Manual

H UDP Technology Ltd. 31

which is a meaningless operation. For the net devices, since each created instance corresponds to each

connection by 1:1, the instance shall be created for each net device.

Using COM interface has several advantages. The first is that you do not have to load dozens of exported

API function using GetProcAddress. You can get them using only QueryInterface.

The second is that you can find out API set a DLL provides. For example, ECPSV.DLL provides Cap5,

Aud5, Ovr5. MPJVS.DLL provides Cod5. You have difficulty, if you use exported API method. But, if

you use COM interface method, it is easy because you just QueryInterface for a specified DLL.

3.1.1. In C++

Files for C++

The following files are included according to the API set to be used.

Using Exported Function in C++

Followings are the example of the Dynamic Link in c++.

Following is declaring the function pointer variable. Include it to all *.cpp files using it.

Extern BOOL CMN5_API (*_Cod5Setup)(void);

extern BOOL CMN5_API (*_Cod5Endup)(void);

extern BOOL CMN5_API (*_Cod5Run) (void);

extern BOOL CMN5_API (*_Cod5Stop)(void);

Following is defining the function pointer variable and retrieving function pointer value.

API File name

Common Cmn5BoardLibEx.h(Must be included)

Cap5 Cap5BoardLibEx.h

Cod5 Cod5BoardLibEx.h

Aud5 Aud5BoardLibEx.h

Ovr5 Ovr5BoardLibEx.h

Version 5API SDK Manual

H UDP Technology Ltd. 32

BOOL CMN5_API (*_Cod5Setup)(void);

BOOL CMN5_API (*_Cod5Endup) (void);

BOOL CMN5_API (*_Cod5Run) (void);

BOOL CMN5_API (*_Cod5Stop) (void);

HMODULE g_hDll;

LoadDriver()

{

 g_hDll = LoadLibrary(“mp204.dll”);

 _Cod5Setup= (BOOL CMN5_API (*)(void))GerProc(g_hDll, “Cod5Setup”);

 _Cod5Endup= (BOOL CMN5_API (*)(void))GerProc(g_hDll, “Cod5Endup”);

 _Cod5Run= (BOOL CMN5_API (*)(void))GerProc(g_hDll, “Cod5Run”);

 _Cod5Stop= (BOOL CMN5_API (*)(void))GerProc(g_hDll, “Cod5Stop”);

}

UnlooadDriver()

{

 FreeLibrary(hDll)

}

Following is an actual usage code.

 _Cod5Setup();

 _Cod5Endup();

 _Cod5Run();

 _Cod5Stop();

Note that function call using a function pointer can be done in following methods, but the first method is

more convenient.

_Cod5Setup();

(*_Code5Setup)();

Using COM interface methods in C++

static BOOL Uda5CreateInstance(HMODULE hLib,REFIID riid,void ** ppInterface)

{

 if(hLib){

 BOOL rs;

 Iunknown* pUnknown;

 BOOL (FAR WINAPI*_CreateInstance)(Iunknown ** ppInterface);

Version 5API SDK Manual

H UDP Technology Ltd. 33

 FARPROC test_proc=GetProcAddress(hLib,”Cmn5CreateInstance”);

 if(test_proc){

 (FARPROC)&_CreateInstance=test_proc;

 rs=(*_CreateInstance)(&pUnknown);

 if(rs){

 HRESULT hr;

 hr=pUnknown->QueryInterface(riid,ppInterface);

 pUnknown->Release();

 if(SUCCEEDED(hr))

 return TRUE;

 }

 }

 }

 return FALSE;

}

HRESULT CMPJVCardManager::Load(...)

...

 Icod5* pCod5Api;

 Icap5* pCap5Api;

 Iaud5* pAud5Api;

 hLib=LoadLibrary(“MPJVS.DLL”);

 if (!Uda5CreateInstance(hLib, IID_Icod5, (void**)&pCod5Api)) {

 return E_FAIL;

 }

 pCod5Api->QueryInterface(IID_Icap5, (void**)&pCap5Api);

...

}

The actual API is used in the following manner.

Void SomeFunction()

{

 // COM interface was acquired from other function.

 M_pCap5Api->Cap5Setup();

 m_pCap5Api->Cap5Run();

 m_pCod5Api->Cod5Setup();

 m_pCod5Api->Cod5Run();

 //

}

Version 5API SDK Manual

H UDP Technology Ltd. 34

3.2. Using Driver’s API

The chapter 3 describes actual standard API using procedure.

This paragraph describes API usage for actual API usage sequence. Examples are provided for general

usage. API not described in the paragraph can be used in the same way. Some scenarios for the program

configuration will be described and then the event method will be detailed more concretely.

3.2.1. Program Configuration Scenario

This chapter describes three methods that are most frequently used among the methods to configure the

program that uses API.

Program Implementation by Callback Method

When using the callback method, the program configuration scenario is as follows: When using

callback method, most programs are configured in the following manner.

1. Load the driver dll.

2. Get the driver information.

3. Activate the driver.

4. Perform driver setup.

5. Register the callback function.

6. Set up various properties/adjusts.

7. Run the driver.

8. Now, the driver calls the StartCallback, DataCallback and EndCallback registered by the APP.

The DataCallback is called each time the data is generated.

9. Create the thread that stops the driver.

10. Wait until the stopthread ends while processing the message.

11. End the driver up to exit or repeat the above procedure from the step number 6.

Program Implementation by Event Method 1

Event method is used. Processing is performed in one independent thread. Generally, the network device

creates a thread for each connection and performs processing as follows:

1. Load the driver dll.

2. Make connection in the case of network device.

3. Get the driver information.

Version 5API SDK Manual

H UDP Technology Ltd. 35

4. Activate the driver.

5. Perform driver setup.

6. Set up various properties/adjusts.

7. Run the driver.

8. Wait for event.

9. If an event occurs, obtain, process and release the data.

10. Change the adjust. Repeat the above procedure from step number 8 until it must be stopped.

11. Stop the driver.

12. End the driver or repeat the above procedure from step number 6.

13. Disconnect in the case of the network device.

Program Implementation by Event Method 2

In this method, the initial endup is performed in the main thread and separate thread that processes only

the data that is created and used.

In the main thread:

1. Load the driver dll.

2. Get the driver information.

3. Activate the driver.

4. Perform driver setup.

5. Set up various properties/adjusts.

6. Create dataloop thread.

7. Run the driver.

8. Stop the driver.

9. End the dataloop thread.

10. End the driver up to exit or repeat the above procedure from step number 5.

In the data loop thread:

1. Wait for event.

2. If an event occurs, obtain, process and release the data.

3. Repeat the above procedure from step number 1 until it must be stopped.

3.2.2. Getting Started

General programming structure are described in the next. See next paragraphs for details. The DataLoop

Version 5API SDK Manual

H UDP Technology Ltd. 36

type has different usage details and may not follow the example.

Void main()

{

 //OnCreate,OnInitDialog

 GetDriverInformation();//refer to 3.3.2. Driver Informations

 //On User pushed the start button

 OpenDriver();//Create DataLoopThread

 //

 //finishes when the user push the stop button

 UILoop();//or Message Loop

 //on user pushed the stop button

//OnDestroyWindow

 CloseDriver();//Terminate DataLoopThread

}

//refer to 3.3.5. ~3.3.8 Data Loops

DataLoopThread()

{

 DataLoop;

};

void OpenDriver()

{

 InitializeDriver();//refer to 3.3.3. Driver Initialization

 StartDriver();//refer to 3.3.4. Start Driver

}

void CloseDriver()

{

 StopDriver();//refer to 3.3.9. Stop Driver

 UninitializeDriver();//refer to 3.3.10. Driver Uninitialization

}

3.2.3. Driver Information

Use the GetSystemInfo function to collect driver initialization information. Get number of boards and

driver information of the API. Then collect information for each board. The step is required for each API.

Call all functions in each API to use. Below is an example for collecting information of the Cap5 API and

Cod5 API.

BOOL GetDriverInformation()

{

 Cap5GetSystemInfo(&g_CapSystemInfo)

Version 5API SDK Manual

H UDP Technology Ltd. 37

 Cod5GetSystemInfo(&g_CodSystemInfo)

 ULONG I;

 CMN5_BOARD_INFO_DESC bid;

 bid.uInfoVersion = CMN5_BOARD_INFO_VERSION;

 bid.uInfoSize = sizeof(CAP5_BOARD_INFO);

 for(i=0; i<g_nCapBoards; i++){

 Cap5GetBoardInfo(I, &bid, &g_pCapBoardInfo[i]);

 }

 bid.uInfoSize = sizeof(COD5_BOARD_INFO);

 for(i=0; i<g_nCodBoards; i++){

 Cod5GetBoardInfo(I, &bid, &g_pCodBoardInfo[i]);

 }

 return TRUE;

}

3.2.4. Driver Initialization

The Driver Initialization means initializing each board with basic driver information and separately

acquired Activation code, then calling the Setup function. Each API requires the driver initialization.

Below is an example of initializing the Cap5 API and Cod5 API. The GetActCodefromModelID function

returns Activation Code from ModelID provided by the GetBoardInfo function.

BOOL InitializeDriver()

{

 BOOL rs;

 UCHAR activeCode[16];

 for(int i=0;i<(int)g_CapSystemInfo.uNumOfBoard;i++) {

 GetActCodefromModelID(g_pCapBoardInfo[i].uModelID, activeCode);

 rs = Cap5Activate(I, g_ActivationCode);

 if(!rs) {

 return FALSE;

 }

 GetActCodefromModelID(g_pCodBoardInfo[i].uModelID, activeCode);

 rs = Cod5Activate(I, g_ActivationCode);

 if(!rs) {

 return FALSE;

 }

 }

 if(!Cap5Setup()){

 return FALSE;

 }

 if(!Cod5Setup()){

Version 5API SDK Manual

H UDP Technology Ltd. 38

 return FALSE;

 }

 return TRUE;

}

The GetActCodefromModelID function uses an internal array of Activation Code to ModelID to return

matched ActiveCode from parameter ModelID. ModelID and ActiveCode in the next example is not

actual values. The actual values are provided separately from the company.

Struct CMN_MODELID_ACTCODE {

 DWORD ModelID;

 BYTE ActCode[16];

};

CMN_MODELID_ACTCODE g_IdnCode[] = {

 {0x08A1, { 0x21, 0x49, 0x34, 0xBC, 0x3C, 0x8D, 0x90, 0xD3,

 0xF5, 0x73, 0x22, 0xA0, 0xA1, 0x3D, 0x2C, 0x58}},

 {0x08A2, { 0x34, 0xBC, 0x3C, 0x8D, 0x03, 0xF5, 0x73, 0x1F,

 0x02, 0xC0, 0xA1, 0x3D, 0x02, 0x7C, 0x9E, 0x02}},

 {0x08A3, { 0x58, 0x03, 0xA8, 0x03, 0xF5, 0x73, 0x22, 0xA0,

 0x49, 0xC3, 0x59, 0xC0, 0xA1, 0x03, 0x03, 0x03}},

};

BOOL GetActCodefromModelID(DWORD ModelID, UCHAR * ActCode)

{

 for(int i=0;i<sizeof(g_IdnCode)/sizeof(g_IdnCode);i++) {

 if(g_ModelIDnActCode[i].ModelID== hwid) {

 CopyMemory(ActCode, g_IdnCode[i].ActCode,16);

 return TRUE;

 }

 }

 return FALSE;

}

3.2.5. Start Driver

This paragraph describes how to actually running the driver software. The next code is an actual example.

The ApplySetting function assigns properties and adjusts for each API. Details are explained later. The

RunCaptureThread function loads generated data and create /starts processing DataThread. Internal

structure is described in the next paragraph. Create the DataThread and call Run function of each API to

actually start the driver. Prepare data processing before running the driver to prevent data loss. Otherwise,

generated data before starting the DataThread may cause buffer overflow of the driver. The StartDriver

function also starts the WatchDog. In the example, since the Window Timer is used to drigger the

Version 5API SDK Manual

H UDP Technology Ltd. 39

WatchDog, call the SetTimer function to create the WindowTimer. The

APP_WATCHDOG_TIME_PERIOD must be smaller than the WatchDog Timeout value.

BOOL StartDriver()

{

 ApplySetting();

 RunDataLoopThread();

 Cod5Run();

 Cap5Run();

 Cap5SetWatchDog(0, WC_ENABLE,0,0);

 Cap5SetWatchdog(0, WC_SET_TIMEOUT_VALUE, 30, 0);

 Cap5SetWatchdog(0, WC_SET_BUZZER_TIMEOUT_VALUE, 1, 0);

 SetTimer(WATCH_TIMER_ID,10*1000,NULL); // each call 10s

 return TRUE;

}

The ApplySetting function includes routine for setting all property required in the driver setup state.

Generally, configuration dialog in the APP is used to collect user inputs. The function also calls Adjust

functions to set initial Adjust for generated data from the Run. Each setting can be applied to board or

channel level. Use appropriate loops algorithm. The next example adjusts VideoFormat, ColorFormat,

ImageSize, and Video in the Cap5, while setting ImageSize in the Cod5. In the actual APP, all

properties/adjusts by the API must be expressly set. Otherwise, default value in the drive may cause

unexpected data.

BOOL ApplySetting()

{

 for(DWORD bd=0;bd<g_nCapBoards;bd++) {

 Cap5SetVideoFormat(bd,videoformat);

 Cap5SetColorFormat(bd,CAP_COLOR_FORMAT_YUY2);

 for(DWORD i=0;i<CapNumOfChannel(bd);i++) {

 Cap5SetImageSize(bd,I,chprop.imagesize);

 Cap5SetAdjust(bd, I, VAC_BRIGHTNESS,brightness,0,0,0);

 Cap5SetAdjust(bd, I, VAC_CONTRAST,contrast,0,0,0);

 Cap5SetAdjust(bd, I, VAC_SATURATION_U,saturationu,0,0,0);

 Cap5SetAdjust(bd, I, VAC_SATURATION_V,saturationv,0,0,0);

 Cap5SetAdjust(bd, I, VAC_HUE,hue,0,0,0);

 }

 }

 for(bd=0;bd<g_nCodBoards;bd++) {

Version 5API SDK Manual

H UDP Technology Ltd. 40

 for(DWORD i=0;i<CapNumOfChannel(bd);i++) {

 ULONG codImgSize= (vidfmt == CMN_VIDEO_FORMAT_NTSC_M)?

 MAKEIMGSIZE(640, 480): MAKEIMGSIZE(720, 576);

 Cod5SetImageSize(bd,I,codImgSize);

 }

 }

 return TRUE;

}

The RunDataLoopThread generates the DataThread. The function generates one thread in the Event

method. Below is now to generate the thread in the Event method.

BOOL RunDataLoopThread ()

{

 unsigned id;

 m_hDataLoopThread = _beginthreadex(0, 0, DataLoopThread, 0, 0, &id);

 return TRUE;

}

The next is how to generate the thread in the Query method using Cap5 and Cod5 API sets.

BOOL RunDataLoopThread ()

{

 unsigned id;

 m_hCapDataLoopThread = _beginthreadex(0, 0,

 CapDataLoopThread, 0, 0, &id);

 m_hCodDataLoopThread = _beginthreadex(0, 0,

 CodDataLoopThread, 0, 0, &id);

 return TRUE;

}

3.2.6. Data Loop

This chapter shows example of Data Loop using the Event method.

In the Event Data Loop, one thread handles all data types. Since only one thread is used, race condition or

synchronization problem found in the Query method are not found. The next is general Event type

DataLoopThread. FetchAndProcessRawVideoData and FetchAndProcessCompressedData are explained

in the next paragraph. HstopEvent comes in the top to test thread-ending condition. Get all event handles

for the DataType to use and store them in the array. Use Win32 WiatForMultipleObject function to check

DataEvent or Ending Event. If the Ending event is set, end the thread. If the DataEvent is set, process

appropriate processing depends on the DataType. Simple status changes such as DT_SENSOR and

Version 5API SDK Manual

H UDP Technology Ltd. 41

DT_VSTATS do not require calling the ReleaseData function.

DWORD WINAPI DataLoopThread ()

{

 HANDLE events[5];

 BOOL retVal;

 events[0] = hStopEvent;

 Cap5GetEventHandle(DT_VSTATUS,&events[1]);

 Cap5GetEventHandle(DT_SENSOR, &events[2]);

 Cod5GetEventHandle(DT_COD, &events[3]); //cod

 Cap5GetEventHandle(DT_VIDEO, &events[4]);

 while(1){

 DWORD obj = WaitForMultipleObjects(5,events, FALSE, INFINITE);

 if(obj==WAIT_OBJECT_0) break;//terminate this thread.

 Switch(obj){

 case WAIT_OBJECT_0+4:

 FetchAndProcessRawVideoData();

 break;

 }

 case WAIT_OBJECT_0+3{

 FetchAndProcessCompressedData();

 break;

 }

 case WAIT_OBJECT_0+2{

 CMN5_SENSOR_STATUS_INFO info={0,};

 if(Cap5GetEventData(d_type, (void*)&info)) {

 OnSensor(&info);

 }

 break;

 }

 case WAIT_OBJECT_0+1{

 CMN5_VIDEO_STATUS_INFO info={0,};

 if(Cap5GetEventData(d_type, (void*)&info)) {

 OnVideoPresent(&info);

 }

 break;

 }

 }//switch

 }// while

 return 0;

}

In the WaitForMultipleObject function, while waiting for multiple events simultaneously, using fixed

sequence of events can cause the following problem. If a preceding event is more frequent than other

Version 5API SDK Manual

H UDP Technology Ltd. 42

events in a fixed sequence, data generated by other events with lower priority might be temporarily lost

when the data buffer is full. To avoid this while keeping the fixed sequence, move the frequent events to

the end of the sequence to prevent the problem.

However, for the better resource distribution, you can move any event to end of the sequence whenever

the event generates data.

For MediaData, the driver has internal cue to store information to the generated data. Event for the type

means there is one or more data in the cue. If the Event is set by the Wait function, the event is reset. If

there is one or more data in the cue, the next data becomes unavailable. Therefore a variable

uHasNextData is provided to notify that there are more data in the cue. Run a loop to completely empty

the cue while the uHasNextData is set. The APP uses the function to display, compress, or process raw

video data. Release buffer for the processed data with the Cap5ReleaseData function.

Void FetchAndProcessRawVideoData()

{

 do {

 CAP5_DATA_INFO info={0,};

 if(retVal = Cap5GetEventData(d_type, &info)) {

 if(info.pDataBuffer) {

 OnCapture((CMN5_DATA_INFO_HEADER*)&info);

 }

 Cap5ReleaseData((void*)&info);

 }

 } while(retVal && info.uHasNextData);

}

For RawVideoData, data is generated per frame. Even if FramDrop occurs, the driver keeps generating

data. Therefore no additional action is required. However, for CODEC Data, if an error occurs, the driver

stops data generation from the channel. The APP needs to perform appropriate processing and enable the

driver with the Cod5VideoEnable function. The next is example of Cod5 data receiving.

Void FetchAndProcessCompressedData()

{

 do {

 COD5_DATA_INFO info={0,};

 if(retVal = Cod5GetEventData(d_type, &info)) {

 if(info.uErrCode!= EC_NO_ERROR) {

 Cod5VideoEnable(info.uBoardNum, info.uChannelNum, TRUE);

 } else {

 if(info.pDataBuffer) {

 OnCapture((CMN5_DATA_INFO_HEADER*)&info);

 }

 Cod5ReleaseData((void*)&info);

Version 5API SDK Manual

H UDP Technology Ltd. 43

 }

 }

 } while(retVal && info.uHasNextData);

}

3.2.7. Data Process 1– Media Data

The Media Data pointer is to data position and information about the data. The Media Data also includes

the board number and the channel number. Beginning of the Media Data structure is equal to the

CMN5_DATA_INFO_HEADER structure. Check uDataType field and cast the data to each API structure.

BOOL OnCapture(CMN5_DATA_INFO_HEADER* pdata)

{

 int bdid = pInfoData->uBoardNum;

 int bdch = pInfoData->uChannelNum;

 if(pdata->uDataType==DT_VIDEO){

 CAP5_DATA_INFO* pInfoCod = (CAP5_DATA_INFO*)pdata;

 PBYTE Image = (pInfoData->pDataBuffer);

 if(Image) {

 DisplayImage(bdid,bdch,Image);

 }

 }else if(pdata->uDataType==DT_COD){

 COD5_DATA_INFO* pInfoCod = (COD5_DATA_INFO*)pdata;

 PBYTE Image = (pInfoData->pDataBuffer);

 if(Image) {

 g_recstore.StoreImage(bdid,bdch,Image, pInfoCod->uDataSize);

 }

 }else{

 //process other data types...

 }

 return TRUE;

}

3.2.8. Data Process 2- Status

Process the Status change in the board level. While the status contains the current status and changed

channel information, only process the changed channels. The next is example of processing the Video

Status change. Since the API 5 supports up to 256 channels, all bits in the 8 ULONG variables must be

checked.

BOOL OnVideoPresent(CMN5_VIDEO_STATUS_INFO* pStatus)

{

 ULONG bd = pStatus->uBoardNum;

 ULONG nChannel = CapNumOfChannel(bd);

Version 5API SDK Manual

H UDP Technology Ltd. 44

 for(ULONG i=0;i<nChannel;i++){

 int index= i/32; //32 means ULONG’S bit count

 int bit=i%32;

 if(pStatus->VideoStatusMask[index]&(1<<bit)){

 BOOL isPresent = (pStatus->VideoStatus[index]&(1<<bit))?1:0;

 ProcessVideoStatusChange(bd,I,isPresent);

 }

 }

 return TRUE;

}

Following is an example of processing Sensor (DI). The method is similar to the Video Status processing.

BOOL OnSensor(CMN5_SENSOR_STATUS_INFO* pStatus)

{

 ULONG bd = pStatus->uBoardNum;

 ULONG nSensor = g_CapBoardInfo[bd].uMaxDI;

 for(ULONG i=0;i<nSensor;i++){

 int index = i/32; //32 means ULONG’S bit count

 int bit = i%32;

 if(pStatus->SensorStatusMask[index]&(1<<bit)){

 BOOL bSensorSet = (pStatus->SensorStatus[index]&(1<<bit))?1:0;

 ProcessSensorStatusChange(bd, I, bSensorSet);

 }

 }

 return TRUE;

}

3.2.9. Stop Driver

Corresponds to the Start Driver. Includes stop condition in the DataLoopThread.

BOOL CmainControlDlg::StopCapture()

{

 StopDataLoopThread();

 KillTimer(WATCH_TIMER_ID);

 Cap5SetWatchdog(0, WC_DISABLE, 0, 0);

 Cod5Stop();

 Cap5Stop();

Version 5API SDK Manual

H UDP Technology Ltd. 45

}

The StopCaptureThread stops the DataThread. In the Event method, there is only one thread. To stop the

thread, set end event and wait for the thread to stop.

Void StopDataLoopThread()

{

 SetEvent(m_hStopCaptureEvent);

 WaitForSingleObject(m_hThreadLoopProc, INFINITE);

 CloseHandle(m_hCaptureThreadProc);

}

In the Query method, instead of using the end event, set the g_bCapture variable to 0 and wait for all

DataLoopThread to stop.

Void StopCaptureThread()

{

 g_bCapture = 0;

 WaitForSingleObject(m_hCapDataLoopThread, INFINITE);

 WaitForSingleObject(m_hCodDataLoopThread, INFINITE);

 CloseHandle(m_hCapDataLoopThread);

 CloseHandle(m_hCodDataLoopThread);

}

3.2.10. Driver Uninitialization

The counterpart of Driver Initialization. Only calls Endup functions of each API.

BOOL UninitializeDriver()

{

 Cap5Endup();

 Cod5Endup();

 return TRUE;

}

Version 5API SDK Manual

H UDP Technology Ltd. 46

Revision History

Date Revision Description

2004-02-24 A Preliminary

2005-06-08 B Second Revision

2006-02-24 C Third Revision

2006-08-21 D Do not support Delphi anymore.

2008-04-11 E Caution about GetEventData and ReleaseData added

2008-07-21 F Model examples in API set outline corrected

2009-04-27 G Correct the errata

2009-05-15 H Added the Microsoft Windows Vista to the supported OS

It is apt to change the contents.

